skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pattillo, Curtis M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Becker, Anke (Ed.)
    ABSTRACT Streptomycin (Sm) is a commonly used antibiotic for its efficacy against diverse bacteria. The plant pathogenAgrobacterium fabrumis a model for studying pathogenesis and interkingdom gene transfer. Streptomycin-resistant variants ofA. fabrumare commonly employed in genetic analyses, yet mechanisms of resistance and susceptibility to streptomycin in this organism have not previously been investigated. We observe that resistance to a high concentration of streptomycin arises at high frequency inA. fabrum, and we attribute this trait to the presence of a chromosomal gene (strB) encoding a putative aminoglycoside phosphotransferase. We show howstrB, along withrpsL(encoding ribosomal protein S12) andrsmG(encoding a 16S rRNA methyltransferase), modulates streptomycin sensitivity inA. fabrum. IMPORTANCEThe plant pathogenAgrobacterium fabrumis a widely used model bacterium for studying biofilms, bacterial motility, pathogenesis, and gene transfer from bacteria to plants. Streptomycin (Sm) is an aminoglycoside antibiotic known for its broad efficacy against gram-negative bacteria.A. fabrumexhibits endogenous resistance to somewhat high levels of streptomycin, but the mechanism underlying this resistance has not been elucidated. Here, we demonstrate that this resistance is caused by a chromosomally encoded streptomycin-inactivating enzyme, StrB, that has not been previously characterized inA. fabrum. Furthermore, we show how the genesrsmG,rpsL, andstrBjointly modulate streptomycin susceptibility inA. fabrum. 
    more » « less